

Description

The JH5542B(L7/H) is a high precision non-isolated buck driver with active PFC, specially designed for universal input offline constant current LED lighting. The driver with on-chip PFC circuit achieves high power factor and low THD. Operating in critical conduction mode, the power MOSFET switching loss is reduced and the inductor is fully utilized.

The JH5542B(L7/H) integrates a 600V power MOSFET. With few external components, the LED output current can be precisely controlled.

The JH5542B(L7/H) utilizes floating ground structure. The inductor current is sensed during the whole switching cycle. So it achieves high precision output current control, and excellent line regulation and load regulation.

The JH5542B(L7/H) are built-in JFET start-up and IC power supply circuit, which enable the system to quickly start, and reduce the external power supply components, achieve smaller volume.

The JH5542B(L7/H) offers rich protection functions to improve the system reliability, including LED open circuit protection, LED short circuit protection, VCC under voltage protection, CS resistor open circuit protection and cycle by cycle current limit. All the protection functions are auto-recovery. The system reliability is further improved by the thermal regulation function. The output current is reduced when the driver is over temperature.

Available in SOP-7 /DIP-8 package.

Typical Application

Features

- Built-in JFET start-up and IC power supply circuit, The VCC power supply resistors and power feedback circuits from LED chips are not needed
- Ultra fast system start
- Ultra low operating current
- Active PFC for High Power Factor and Low THD
- Internal 600V Power MOSFET
- ±3% LED Output Current Accuracy
- Excellent Line and Load Regulation
- Critical Conduction Mode Operation
- LED Short/Open Protection
- Current Sensing Resistor Open Protection
- Cycle by Cycle Current Limit
- VCC Under Voltage Protection
- Auto Fault Recovery
- Thermal Regulation Function

Applications

- LED retrofit lamps, Bulb, Spot Light, GU10/E27
- PAR Lamp
- LED String, LED tube
- Other LED Light

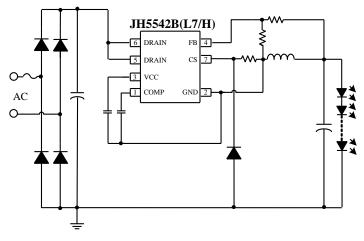
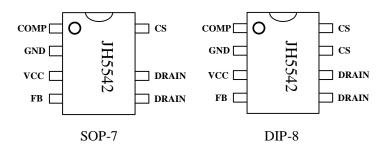
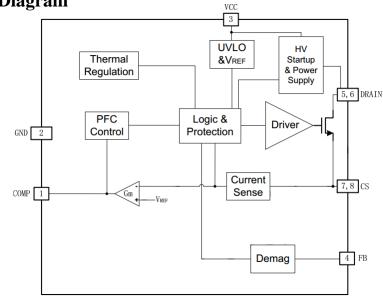



Figure 1. Typical application circuit for JH5542B(L7/H)

Ordering Information

Order codes					Package	
Halogen- Tube	Halogen-Free-Tube	Halogen-Reel Halogen-Free-Reel		Marking	i uonage	
N/A	N/A	N/A	JH5542BL7-LP-AR	JH5542	SOP-7	
N/A	JH5542BH-H-BR	N/A	N/A	JH5542	DIP-8	

Pin Configuration and Marking Information


Pin Definition

Pin No.	Name	Description		
		Loop Compensation Node. This pin connects a capacitor to GND for		
1	COMP	OMP stabilization of the control loop, achieving accurate LED current, high		
		Power Factor and low THD.		
2	GND	Ground.		
3	VCC	Power Supply Pin. Connect a bypass capacitor from this pin to GND.		
4 FB		Feedback Voltage Input Pin. This pin detects the inductor demagnetization		
4	ГD	signal and the output voltage.		
5,6	DRAIN	Internal HV Power MOSFET Drain.		
7, 8	CS	Current Sense Pin. Connect a resistor to GND to sense the inductor current.		

Internal Block Diagram

Absolute Maximum Ratings (note1)

Symbol	Parameters	Range	Units
V _{DS}	Internal HV MOSFET Drain to Source voltage	-0.3~600	V
I _{CC_MAX}	VCC pin maximum sink current	20	mA
COMP	Compensation pin voltage	-0.3~6	V
FB	Feedback pin input voltage	-0.3~6	V
CS	Current sense pin input voltage	-0.3~6	V
D	Derma dissignation (neta2)	SOP-7 0.45	W
P _{DMAX}	Power dissipation (note2)	DIP-8 0.9	W
0		SOP-7 145	°C/W
θ_{JA}	Thermal resistance (Junction to Ambient)	DIP-8 80	°C/W
T _J	Operating junction temperature	-40 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C
	ESD (note3) 2		KV

Note 1: Stresses beyond those listed "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved. The electrical characteristics table defines the operation range of the device, the electrical characteristics is assured on DC and AC voltage by test program. For the parameters without minimum and maximum value in the EC table, the typical value defines the operation range, the accuracy is not guaranteed by spec.

Note 2: The maximum power dissipation decrease if temperature rise, it is decided by T_{JMAX} , θ_{JA} , and environment temperature (T_A). The maximum power dissipation is the lower one between $P_{DMAX} = (T_{JMAX} - T_A)/|\theta_{JA}|$ and the number listed in the maximum table. **Note 3:** Human Body mode, 100pF capacitor discharge on 1.5K Ω resistor.

Non-isolated Buck APFC Offline LED Driver JH5542B(L7/H)

Recommended Operation Conditions

Symbol	Symbol	Parameter	Input voltage	Range	Unit
	I _{LED} 1	Output LED current @ Vout=36Vdc	90Vdc \sim	< 300	mA
JH5542BL7			265Vdc		
	I _{LED} 2	Output LED current @ Vout=72Vdc	90Vdc \sim	<270	mA
			265Vdc		
JH5542BH	I _{LED} 1	Output I ED summert @ Vout 26Vds	90Vdc \sim	< 350	mA mA
		Output LED current @ Vout=36Vdc	265Vdc		
	I _{LED} 2	Output LED current @ Vout=72Vdc	90Vdc \sim	<300	
			265Vdc		

Electrical Characteristics (Notes 4, 5) (Unless otherwise specified, V_{CC} =12V and T_A =25 °C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Supply Voltage Section							
V _{CC_ON}	VCC Turn On Threshold	V _{CC} Rising		11.2		V	
V _{CC_HIGH}	VCC charging over Threshold Voltage	V _{CC} Rising		11.2		V	
V _{CC_UVLO}	V _{CC} Turn Off Threshold	V _{CC} Falling		7.4		V	
V _{CC_CLAMP}	V _{CC} Clamp Voltage			14		v	
I _{CC_UVLO}	V _{CC} Startup Current	V _{CC} Rising, V _{CC} = V _{CC_ON} - 1V		50		μΑ	
I _{CC}	V _{CC} Operating Current	F _{OP} =7kHz		170		μΑ	
Feedback Sect	ion						
V_{FB_FALL}	FB Falling Edge Threshold Voltage	FB Falling		0.2		V	
V_{FB_HYS}	FB Hysteresis Voltage	FB Rising		0.15		V	
V _{FB_OVP}	FB Over Voltage Protection Threshold			1.76		V	
T _{ON_MAX}	Maximum On Time			5.7		μs	
T _{OFF_MIN}	Minimum Off Time			2.5		μs	
T _{OFF_MAX}	Maximum Off Time			150		μs	
Current Sense Section							

Non-isolated Buck APFC Offline LED Driver

JH5542B(L7/H)

CS Peak Voltage Limitation			1.5		V		
Leading Edge Blanking Time for Current Sense			300		ns		
Switch off Delay Time			200		ns		
Compensation Section							
Internal Reference Voltage		194	200	206	mV		
COMP Low Clamp Voltage			1.65		V		
COMP Linear Operating Voltage Range		1.65		4.45	V		
COMP High Clamp Voltage			4.45		V		
Power MOSFET Section							
Static Drain-source On-resistance	V _{GS} =10V/I _{DS} =0.4A		3.7		Ω		
Drain-Source Breakdown Voltage	V _{GS} =0V/I _{DS} =250uA	600			V		
Power MOSFET Drain Leakage Current	V _{GS} =0V/V _{DS} =600V			1	μΑ		
ion							
JFET Current	40V Between JFET Drain and Chip GND		9		mA		
JFET Breakdown Voltage		700			V		
JFET Off Current			45		μΑ		
Thermal Regulation Section							
Thermal Regulation Temperature			142		°C		
	Leading Edge Blanking Time for Current Sense Switch off Delay Time Section Internal Reference Voltage COMP Low Clamp Voltage COMP Linear Operating Voltage Range COMP High Clamp Voltage COMP High Clamp Voltage T Section Static Drain-source On-resistance Drain-Source Breakdown Voltage Power MOSFET Drain Leakage Current ion JFET Current JFET Current JFET Sreakdown Voltage JFET Off Current Hation Section	Leading Edge Blanking Time for Current SenseImage: Comp of the senseSwitch off Delay TimeImage: Comp of the senseSectionImage: Comp of the senseCOMP Low Clamp VoltageImage: Comp of the senseCOMP Linear Operating Voltage RangeImage: Comp of the senseCOMP Linear Operating Voltage RangeImage: Comp of the senseCOMP High Clamp VoltageImage: Comp of the senseComp Linear Operating VoltageVoltageComp Linear Operating VoltageImage: Comp of the senseComp Comp of the senseVoltageComp of the senseVoltageComp of the senseVoltageStatic Drain-source On-resistanceVogs=10V/Ips=0.4ADrain-Source Breakdown VoltageVogs=0V/Vps=600VDrain-Source Breakdown VoltageVogs=0V/Vps=600VImage: Differ Current40V Between JFET Drain and Chip GNDJFET Current40V Between JFET Drain and Chip GNDJFET Off CurrentImage: Comp of the senseImage: Differ CurrentImag	Leading Edge Blanking Time for Current SenseInternal Reference VoltageInternal Reference Voltage194Section194COMP Low Clamp Voltage194COMP Linear Operating Voltage1.65COMP High Clamp Voltage1.65COMP High Clamp Voltage1.65Static Drain-source On-resistanceVGs=10V/IDS=0.4ADrain-Source Breakdown Voltage0Voltage0Drain-Source Breakdown Voltage0Voltage0JFET Drain Leakage CurrentVGs=0V/VDS=600VJFET Current40V Between JFET Drain and Chip GNDJFET Breakdown Voltage700JFET Off Current700IFET Off Current1Thermal Regulation1	Leading Edge Blanking Time for Current Sense300Switch off Delay Time200Section200Section194Internal Reference Voltage194COMP Low Clamp Voltage1.65COMP Linear Operating Voltage Range1.65COMP High Clamp Voltage1.65COMP High Clamp Voltage4.45T Section 4.45 Static Drain-source On-resistance $V_{GS}=10V/I_{DS}=0.4A$ Drain-Source Breakdown Voltage $V_{GS}=0V/V_{DS}=600V$ Power MOSFET Drain Leakage Current $V_{GS}=0V/V_{DS}=600V$ JFET Current40V Between JFET Drain and Chip GND9JFET Section700JFET Off Current1.42	Leading Edge Blanking Time for Current Sense300Switch off Delay Time200Switch off Delay Time200Internal Reference Voltage194200COMP Low Clamp Voltage1.654.45COMP Linear Operating Voltage Range1.654.45COMP Linear Operating Voltage1.654.45COMP High Clamp Voltage1.654.45COMP High Clamp Voltage1.654.45COMP High Clamp Voltage1.654.45COMP High Clamp Voltage3.71Static Drain-source On-resistance $V_{GS}=10V/I_{DS}=0.4A$ 3.7Drain-Source Breakdown Voltage $V_{GS}=0V/I_{DS}=250uA$ 6001Power MOSFET Drain Leakage Current $V_{GS}=0V/V_{DS}=600V$ 11ion111JFET Current40V Between JFET Drain and Chip GND91JFET Off Current4570045Internal Regulation142142		

Note 4: production testing of the chip is performed at 25 °C.

Note 5: the maximum and minimum parameters specified are guaranteed by test, the typical value are guaranteed by design, characterization and statistical analysis

Application Information

The JH5542B(L7/H) is a high precision Active PFC driver integrating 600V power MOSFET, specially designed for non-isolated buck offline constant current LED lighting. Operating in critical conduction mode, the driver achieves high power factor, low THD and high efficiency.

1 Start Up

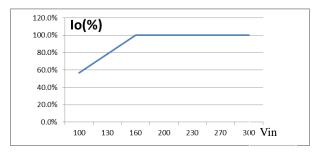
The JH5542B(L7/H) built-in JFET start-up and IC power supply circuit, the VCC power supply resistors and power feedback circuits from LED chips are not needed. After system power up, he VCC pin capacitor is charged up by JFET start-up and IC power supply circuit. When the VCC pin voltage reaches the turn on threshold, the internal circuits start working.

The COMP pin voltage is pulled up to 1.65V quickly, the JH5542B(L7/H) starts switching then. The system works at 7kHz frequency at the beginning, the COMP voltage rises up gradually, and the inductor peak current also rises up. The LED current hence achieves a soft start without overshoot.

When the VCC voltage is higher than V_{CC_HIGH} , turn off the JFET, stop charging. When the VCC voltage is lower than V_{CC_on} , open the JFET, restore the charging.

2 Constant Current Control

The JH5542B(L7/H) utilizes floating ground structure. The inductor current is sensed during the whole switching cycle, thus it achieves high precision output current control and also excellent line and load regulation.


The current in LED can be calculated by the equation:

$$V_{OUT} \approx \frac{V_{\text{REF}}}{Rcs}$$

Where,

 V_{REF} : Internal reference voltage, typically 0.2V Rcs: The current sensing resistor value

Also the JH5542B(L7/H) will drop the output current to limit the temperature when the AC input voltage drop too much, the output current curve is show as below fig.for Vo=54V, Io=150mA application.The curve depends on the duty-cycle and the frequency, which could be change by Lp setting. Suggest Bmax<0.6.

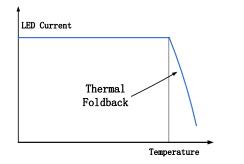
3 Feedback Network

The JH5542B(L7/H) senses the output current zero crossing information through the feedback network, the FB falling threshold voltage is set to 0.2V with 0.15V hysteresis. The FB pin is also used to detect output OVP, the threshold voltage is 1.76V. The ratio of FB upper resistor to lower resistor can be set as:

$$\frac{R_{FBL}}{R_{FBL} + R_{FBH}} = \frac{1.76V}{V_{OVP}}$$

Where,

 R_{FBL} : The lower resistor of the feedback network R_{FBH} : The upper resistor of the feedback network V_{OVP} : Output over voltage setting point



Non-isolated Buck APFC Offline LED Driver JH5542B(L7/H)

4 Thermal Regulation

The JH5542B(L7/H) integrates thermal regulation function. When the system is over temperature, the output current is gradually reduced; the output power and thermal dissipation are also reduced. The system temperature is regulated and the system reliability is improved. The thermal regulation temperature is set to 142° C internally.

5 Protection Functions

The JH5542B(L7/H) offers rich protection functions to improve the system reliability.

When the LED is open circuit, the output voltage will gradually rise up. The output voltage is sensed by the FB pin when power MOSFET is turned off. When FB voltage reaches the OVP threshold, it will trigger fault logic and the system stops switching.

After the system enters into fault condition, the VCC voltage will decrease as the internal IC power supply circuit stopping charging the VCC, until it reaches UVLO threshold. Then the system will restart again. If the fault condition is removed, the system will resume normal operation.

When the LED is shorted circuit, the switching frequency will work under 7 kHz. Meanwhile, the output voltage is low and the VCC pin cannot be charged up by the output voltage, so the VCC pin voltage will gradually decrease and finally reaches the UVLO threshold.

When the output is short circuit or the inductor is

saturated, the CS peak voltage will be relatively high. When CS voltage reaches the internal limitation (1.5V), the power MOSFET will be turned off instantaneously. This cycle by cycle current limitation can help protecting the power MOSFET, the inductor and the output diode.

6 PCB Layouts

The following guidelines should be followed in JH5542B(L7/H) PCB layout:

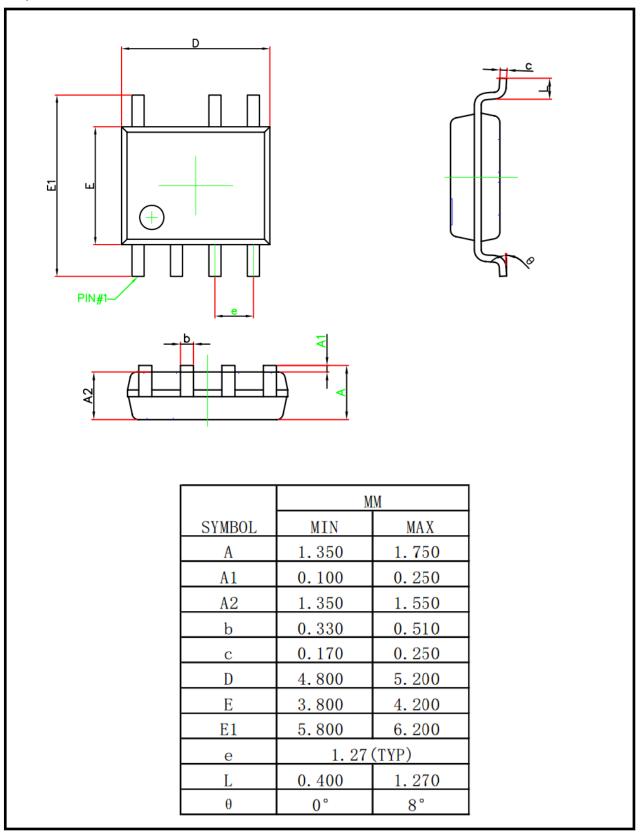
Bypass Capacitor

The bypass capacitor on VCC pin should be as close as possible to the VCC and GND pins.

Ground Path

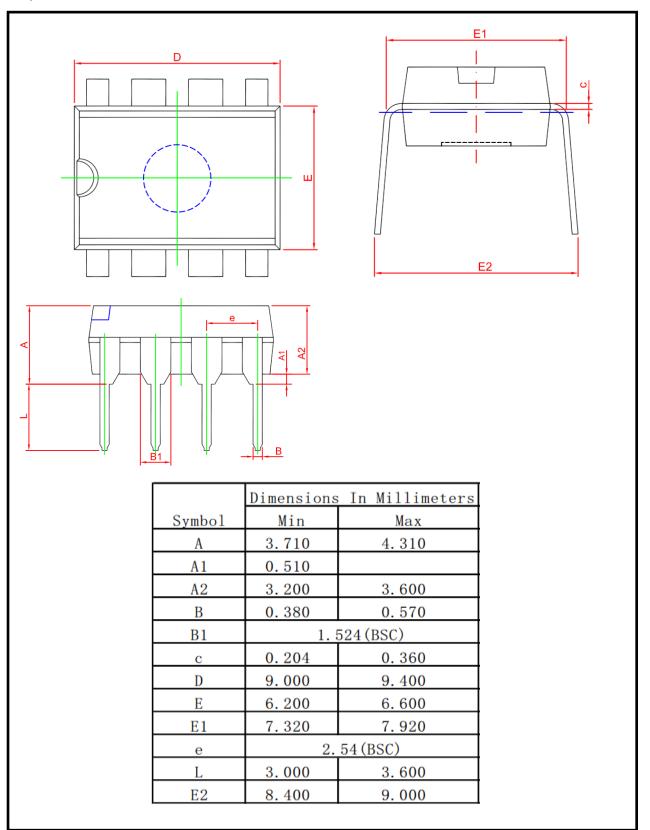
The power ground path for current sense resistor should be short and wide, and it should be as close as possible to the IC ground (GND), otherwise the LED output current accuracy maybe affected. The IC signal ground should be individually connected to the IC GND pin .

The Area of Power Loop


The area of main current loop should be as small as possible to reduce EMI radiation.

FB Pin

The feedback resistor divider should be as close as possible to the FB pin, and the trace must keeps away from dynamic node of the inductor (DRAIN pin trace), otherwise the FB pin OVP function might have risk to be mis-triggered by the system noise.


Physical Dimensions SOP-7

Physical Dimensions DIP-8

Non-isolated Buck APFC Offline LED Driver

JH5542B(L7/H)

注意事项

- 吉林华微电子股份有限公司的产品销售分 为直销和销售代理,无论哪种方式,订货时 请与公司核实。
- 购买时请认清公司商标,如有疑问请与公司 本部联系。
- 3. 在电路设计时请不要超过器件的绝对最大 额定值,否则会影响整机的可靠性。
- 4. 本说明书如有版本变更不另外告知。

联系方式 吉林华微电子股份有限公司

公司地址: 吉林省吉林市深圳街 99 号

邮编: 132013 总机: 86-432-64678411 传真: 86-432-64665812 网址: www.hwdz.com.cn

市场营销部 地址: 吉林省吉林市深圳街 99 号

邮编: 132013 电话: 86-432-64675588 64675688 64678411-3098/3099 传真: 86-432-64671533

NOTE

- Jilin Sino-microelectronics co., Ltd sales its product either through direct sales or sales agent, thus, for customers, when ordering, please check with our company.
- 2. We strongly recommend customers check carefully on the trademark when buying our product, if there is any question, please don' t be hesitate to contact us.
- Please do not exceed the absolute maximum ratings of the device when circuit designing.
- Jilin Sino-microelectronics co., Ltd reserves the right to make changes in this specification sheet and is subject to change without prior notice.

CONTACT

JILIN SINO-MICROELECTRONICS CO., LTD.

ADD: No.99 Shenzhen Street, Jilin City, Jilin Province, China. Post Code: 132013 Tel: 86-432-64678411 Fax: 86-432-64665812 Web Site: www.hwdz.com.cn

MARKET DEPARTMENT

ADD: No.99 Shenzhen Street, Jilin City, Jilin Province, China. Post Code: 132013 Tel: 86-432-64675588 64675688 64678411-3098/3099 Fax: 86-432-64671533

